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Time-lapse deselection model for
human day 3 in vitro fertilization
embryos: the combination of
qualitative and quantitative
measures of embryo growth
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Objective: Topresent a time-lapsedeselectionmodel involvingbothqualitative andquantitativeparameters for assessingembryosonday3.
Design: Retrospective cohort study and prospective validation.
Setting: Private IVF center.
Patient(s): A total of 270 embryos with known implantation data (KID) after day 3 transfer from 212 IVF/intracytoplasmic sperm in-
jection (ICSI) cycles were retrospectively analyzed for building the proposed deselection model, followed by prospective validation using
an additional 66 KID embryos.
Intervention(s): None.
Main Outcome Measure(s): Morphological score on day 3, embryo morphokinetic parameters, abnormal cleavage patterns, and
known implantation results.
Result(s): All included embryos were categorized either retrospectively or prospectively into 7 grades (Aþ, A, B, C, D, E, F). Qualitative
deselection parameters included poor conventional day 3 morphology, abnormal cleavage patterns identified via time-lapse
monitoring, and <8 cells at 68 hours postinsemination. Quantitative parameters included time from pronuclear fading (PNF) to 5-
cell stage and duration of 3-cell stage. KID implantation rates of embryos graded from Aþ to F were 52.9%, 36.1%, 25.0%, 13.8%,
15.6%, 3.1%, and 0 respectively (area under the curve [AUC] ¼ 0.762; 95% confidence interval [CI], 0.701–0.824), and a similar
pattern was seen in either IVF (AUC ¼ 0.721; 95% CI, 0.622–0.821) or ICSI embryos (AUC ¼ 0.790; 95% CI, 0.711–0.868).
Preliminary prospective validation using 66 KID embryos also showed statistically significant prediction in Medicult (AUC ¼ 0.750;
95% CI, 0.588–0.912) and Vitrolife G-Series (AUC ¼ 0.820; 95% CI, 0.671–0.969) suites of culture media.
Use your smartphone
Conclusion(s): The proposed model involving both qualitative and quantitative deselection
effectively predicts day 3 embryo implantation potential and is applicable to all IVF embryos
regardless of insemination method by using PNF as the reference starting time point. (Fertil
Steril� 2016;105:656–62. �2016 by American Society for Reproductive Medicine.)
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(1, 2), a number of publications have
shown promising results using
morphokinetic data to predict embryo
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implantation (1,3–6). One of the most
influential morphokinetic grading
algorithms was published by Meseguer
et al. (1) in 2011. Regarded as one of
the foundation clinical studies of
human embryo morphokinetics, this
algorithm has, however, been
questioned more recently regarding its
transferability between different labora-
tories (7–10). Embryo morphokinetic
results are thought to be the subject of
a number of factors, such as culture
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media (11), oxygen concentration in culture (12), patient
population (13, 14), ovarian stimulating protocols (15),
hormone levels in the female partner (16), or even sperm DNA
fragmentation (17). As the transferability of previously
published morphokinetic algorithms is likely to be influenced
by these factors, one should be cautious when implementing
an embryo morphokinetic algorithm that was constructed in a
different laboratory. In addition, some qualitative deselection
parameters identified via time-lapse imaging of embryos have
been reported, showing an encouraging potential to identify
embryos with a low probability to implant (18–21). The
advantage of using such parameters for embryo deselection is
their qualitative nature, with the measurement being either
positive or negative and also independent of absolute cell
cleavage timings. As a result, interlaboratory transferability
may possibly be improved using algorithms encompassing
such parameters.

The majority of published time-lapse studies to date are
based on embryos fertilized via intracytoplasmic sperm injec-
tion (ICSI) (1, 4) rather than conventional IVF, largely due to
the difficulty in defining sperm entry time in the latter.
However, even in ICSI cases, the sperm entry time point for
each individual embryo may also be imprecise as seen, for
example, in particular time-lapse equipment such as the Em-
bryoscope (Vitrolife), where all embryos cultured on the same
slide share one single starting time point (22). Furthermore,
nuclear mature oocytes were shown to extrude the second po-
lar body at various timings (ranging from 0.70 to 10.15 hours
post-ICSI) (23), indicating that metaphase II oocytes may have
different degrees of cytoplasmic maturity at the point of
sperm injection. Recently, pronuclear fading (PNF), which is
a biological time point, has been proposed as an alternative
reference starting time point, rather than insemination, which
is a procedural time point (24). Using PNF enables IVF and
ICSI embryos to be integrated into the same algorithm and
minimizes the variations in early stage timings owing to the
procedural issues (24). Based on the above findings, the cur-
rent study aims to present a time-lapse deselection model
for predicting the implantation potential of embryos regard-
less of insemination method, including both qualitative and
quantitative measures of the growth of early cleavage human
embryos.
MATERIALS AND METHODS
Patient Management and Embryo Culture

The retrospective part of this study included a total of 212
treatment cycles (84 IVF and 128 ICSI cycles; females age
34.63 � 4.41 vs. 34.45 � 4.51 years, not significant) per-
formed at Fertility North between February 2013 and
December 2014, with all transferred embryos having known
implantation data (KID) (21). In total, 270 (105 IVF and 165
ICSI embryos) fully annotated KID embryos that had reached
at least the 5-cell stagewere analyzed after culture in theMed-
icult media suite (Origio). The prospective part of this study
included [1] 36 KID embryos cultured in the Medicult media
suite from30 IVF/ICSI cycles (females ages 35.11� 4.03 years)
performed between May and July 2015 and [2] 30 KID em-
bryos cultured in the G-Series media suite (Vitrolife) from 23
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IVF/ICSI cycles (females ages 35.97 � 5.31 years, not signifi-
cant) performed between July and September 2015. The use of
the Embryoscope was registered as an innovative procedure
with the Reproductive Technology Council (Department of
Health, East Perth, Australia), and accordingly all partici-
pating couples gave consent to use the Embryoscope as an
incubator for embryo culture. Retrospective data analysis
was approved by the Human Research Ethics Committees at
both Joondalup Health Campus and Edith Cowan University.

Ovarian stimulation, gamete collection, and insemination
using either conventional IVF or ICSI were performed as
described elsewhere (19), with oocyte collection being day
0. Gametes were prepared in the Universal IVF (Origio) or
G-IVF Plus medium (Vitrolife). Fertilized oocytes were placed
in the Embryoscope for 3 days of culture in either ISM1 (Or-
igio) or G-1 Plus medium (Vitrolife) before uterine transfer.
Culture conditions were set at 37�C with 6% CO2, 5% O2,
and balanced N2, with images taken every 10 minutes across
seven focal planes of the embryos.
Morphokinetic and Conventional Assessment of
Embryo Development

All the embryos cultured in the Embryoscope were retrospec-
tively annotated on day 3 by one embryologist (Y.L.), using
the Embryoviewer (Vitrolife) software. The timing parameters
considered in the present study included time from pronuclear
fading to 5-cell stage (T5_PNF, hour) and duration of 3-cell
stage (S2, hour), which had been regarded as two major im-
plantation predictors (t5 relative to sperm injection instead
of PNF and s2) in previous publications (1, 5, 8). Qualitative
parameters used for deselecting embryos were also recorded,
including [1] direct cleavage (DC) where either the 2- or 4-
cell stage was less than 5 hours (20, 21), [2] reverse
cleavage (RC) where either daughter cells fused after
cleavage division or the blastomere failed to divide after
karyokinesis (19), and [3] <6 intercellular contact points
(ICCP) at the end of the 4-cell stage (21). Conventional
morphological assessment was also performed based on the
embryo image captured at 68 hours postinsemination (hpi)
according to criteria previously published (25), analyzing
cell count, symmetry, and degree of fragmentation.
Grading of Day 3 Embryos using the Proposed
Model

Day 3 embryos were graded either retrospectively or prospec-
tively using a series of questions as illustrated in Figure 1.
Briefly, [1] if one was determined to be a poor-quality embryo
(PQE) according to conventional morphology assessment at
68 hpi, it is categorized a grade F, otherwise subject to further
criteria; [2] if one had displayed abnormal cleavage pattern(s)
such as DC, RC, or <6 ICCP at the end of the 4-cell stage, it is
categorized a grade E, otherwise subject to further criteria; [3]
if one had<8 cells at 68 hpi, it is categorized a grade D, other-
wise subject to further criteria; [4] if one had S2> 0.84 hour, it
is categorized a grade C, otherwise subject to further criteria;
[5] if one had T5_PNF> 28.01 hours, it is categorized a grade
B, otherwise subject to further criteria; [6] if one had T5_PNF
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FIGURE 1

Flow chart for embryo classification using both qualitative and
quantitative parameters to assess implantation potential.
Liu. Time-lapse embryo deselection. Fertil Steril 2016.
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between 24.67 and 28.01 hours, it is categorized a grade A,
otherwise Aþ. Steps 1–3 are the qualitative component, while
steps 4–6 are the quantitative component. Rather than using
insemination as the reference starting time point, PNF was
used to minimize early-stage timing variations between IVF
and ICSI embryos (as reported elsewhere) (24).
ET and Confirmation of Implantation

One or two embryos from the cohort per treatment cycle were
selected for uterine transfer at the end of 3 days in culture,
judged using the conventional grade in the retrospective
analysis period or using the proposedmodel in the prospective
period. All ET procedures were performed using a stipulated
standardized technique under ultrasound guidance. Viable
implantation was confirmed at 7 weeks of pregnancy by the
658
detection of fetal heartbeat under ultrasound. Aiming at
comparing embryos displaying different features instead of
treatment cycles, the present study included only KID em-
bryos as previously defined (21).
Statistical Analysis

Proportion data were analyzed using Fisher's exact test.
Continuous parameters were compared via Student's t test.
The prediction power of the proposed model on the implanta-
tion outcome of embryos was tested via receiver operating
characteristic (ROC) with area under the ROC curve (AUC)
test. Logistic regression was used to assess the contributing
strength of parameters that are potentially associated with
implantation outcome. All statistical analysis was performed
using Statistical Package for the Social Sciences 20.0 (SPSS),
and P< .05 was considered statistically significant.

RESULTS
Embryo Deselection using Qualitative Parameters

A total of 270 transferred embryos with KID results were
retrospectively annotated for different types of abnormal
biological events identified via either conventional
morphology assessment (PQE and <8 cells at 68 hpi) or
time-lapse monitoring (DC, RC, and <6 ICCP at the end of
the 4-cell stage). The implantation rate per embryo for those
showing at least one of the above qualitative abnormalities
was 7/104 (6.7%), and this was significantly lower than for
those with no such abnormalities (57/166, 34.3%; P< .01).
Logistic regression analysis showed that multinucleation
(MN) at either the 2- (odds ratio [OR] ¼ 1.222; 95% confi-
dence interval [CI], 0.582–2.564; P¼ .596) or 4-cell stage
(OR ¼ 0.748; 95% CI, 0.137–4.069; P¼ .737) was not signif-
icantly associated with KID implantation outcome after
considering abnormal biological events (OR ¼ 0.062; 95%
CI, 0.015–0.260; P¼ .000) including PQE, DC, RC, and <6
ICCP. Therefore, MN was not included into the deselection
criteria in the present study.
Using Quartiles to Determine Optimal Ranges for
Timing Parameters

After the removal of embryos (n ¼ 104) showing abnormal
biological events as described above, a total of 166 em-
bryos were included for further morphokinetic analysis. Lo-
gistic regression analysis considering major morphokinetic
parameters indicated no significant associations between
implantation outcomes and T3_PNF (OR ¼ 1.122; 95%
CI, 0.512–2.460; P¼ .773) and CC2 (OR ¼ 0.937; 95% CI,
0.418–2.102; P¼ .875) but significant with S2 (OR ¼
0.445; 95% CI, 0.221–0.898; P¼ .024) and nearly signifi-
cant with T5_PNF (OR ¼ 0.800; 95% CI, 0.628–1.019;
P¼ .070). Therefore, S2 and T5_PNF were subsequently
chosen as candidate parameters to be included into the de-
selection model.

Table 1 demonstrates the implantation rates of these
embryos according to quartile ranges of S2, T5_PNF,
T3_PNF, and CC2, where values dividing quartile ranges
were determined by the SPSS software. Embryos with S2
VOL. 105 NO. 3 / MARCH 2016



TABLE 1

Quartile ranges of quantitative parameters and corresponding KID implantation rates after qualitative deselection (n [ 166).

Quartile

S2 T5_PNF T3_PNF CC2

Range, h
Implantation

rate (%) Range, h
Implantation

rate (%) Range, h
Implantation

rate (%) Range, h
Implantation

rate (%)

First <0.17 14/43 (32.6) <24.67 19/42 (45.2)c <12.85 18/39 (46.2) <10.34 15/38 (39.5)
Second 0.17–0.34 21/53 (39.6)b 24.67–25.99 14/45 (31.1) 12.85–13.67 16/51 (31.4) 10.34–10.84 14/47 (29.8)
Third 0.35–0.84 18/41 (43.9)a 26.00–28.01 19/53 (35.8) 13.68–14.51 15/45 (33.3) 10.85–11.67 22/49 (44.9)d

Fourth >0.84 4/29 (13.8)a,b >28.01 5/26 (19.2)c >14.51 8/31 (25.8) >11.67 6/32 (18.8)d

Total – 57/166 (34.3) – 57/166 (34.3) – 57/166 (34.3) – 57/166 (34.3)
Note: S2 ¼ duration of 3-cell stage; T5_PNF ¼ time from pronuclear fading to 5-cell stage; T3_PNF ¼ time from pronuclear fading to 3-cell stage; CC2 ¼ duration of 2-cell stage.
a,b,c,d Same superscript indicates statistical significance (P< .05)

Liu. Time-lapse embryo deselection. Fertil Steril 2016.
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within the fourth quartile range had a significantly
reduced implantation rate compared with those within
the second (13.8% vs. 39.6%, P< .05), third (13.8% vs
43.9%, P< .05), or first three quartile ranges (13.8% vs.
38.7% [53/137], P< .05); whereas embryos with T5_PNF
within the first quartile range had a significantly higher
implantation rate (45.2% vs. 19.2%, P< .05) than those
with T5_PNF within the fourth quartile range. As a result,
the third quartile (0.84 hour) for S2 and the first and third
quartiles (24.67 and 28.01 hours, respectively) for T5_PNF,
were used to categorize ranges for these two timing
parameters.
Implantation Prediction of the Proposed Model

A total of 270 KID embryos were retrospectively categorized
into 7 grades (Aþ to F) as described in Figure 1, and the im-
FIGURE 2
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plantation rates of embryos in each grade are shown in
Figure 2. Both IVF and ICSI embryos showed similar descent
in implantation rates from the top grade (Aþ) to the lowest
grade (F). After converting the grades (from F to Aþ) to
numeric ranking (from 1 to 7), ROC analysis showed signifi-
cant prediction of the proposed model on implantation
outcome in the IVF model (AUC ¼ 0.721; 95% CI, 0.622–
0.821; P¼ .000), ICSI model (AUC ¼ 0.790; 95% CI, 0.711–
0.868; P¼ .000), or a combination of two (AUC ¼ 0.762;
95% CI, 0.701–0.824; P¼ .000).

The proposed model was also prospectively validated us-
ing two different culture media suites. KID implantation rates
for embryos with different grades and ROC analysis are pre-
sented in Table 2. The prediction value of the proposed model
showed a similar pattern in either the Medicult (AUC¼ 0.750;
95% CI, 0.588–0.912; P¼ .033) or G-Series medium (AUC ¼
0.820; 95% CI, 0.671–0.969; P¼ .006).
, IVF=7,
SI=22,
tal=29)

D (n, IVF=14,
ICSI=18,

Total=32)

E (n, IVF=24,
ICSI=41,

Total=65)

F (n, IVF=1,
ICSI=6,

Total=7)

8.6% 21.4% 4.2% 0.0%
9.1% 11.1% 2.4% 0.0%
3.8% 15.6% 3.1% 0.0%

 embryos according to different 
grades

SI (n¼ 165) according to different grades assessed using the proposed
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TABLE 2

Prospective validation of proposed day 3 embryo deselection model
in two different culture media suites (n [ 66).

Grade

KID implantation rates (%)

Medicult G-Series Total

Aþ 37.5 (3/8) 66.7 (4/6) 50.0 (7/14)
A 36.4 (4/11) 38.5 (5/13) 37.5 (9/24)
B 16.7 (1/6) 0/2 12.5 (1/8)
C 0/0 0/1 0/1
D 0/2 0/2 0/4
E 0/9 0/5 0/14
F 0/0 0/1 0/1
Total 22.2 (8/36) 30.0 (9/30) 25.8 (17/66)
AUC

(95% CI)
0.750
(0.588–0.912)

0.820
(0.671–0.969)

0.783
(0.674–0.893)

P value .033 .006 .001
Note: ROC analysis was performed after converting embryo grades (F to Aþ) to numeric
rankings 1–7. Statistical results are expressed as AUC and 95% CI.

Liu. Time-lapse embryo deselection. Fertil Steril 2016.
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DISCUSSION
Embryo selection is one of the most critical tasks in IVF lab-
oratories. As the avoidance of multiple pregnancy after IVF
treatment is gaining greater global consensus, elective single
ET supported by improved embryo selection is being heavily
promoted to maintain pregnancy rates while reducing the
risk of multiple pregnancy (26–28). More than a decade ago,
efforts were made in pioneer studies to model top-quality
cleavage-stage embryos, with an up to 47% implantation
rate of double ETs in women younger than 38 years (29),
which suggests that the clinician should consider a single
ET when a top-quality embryo is available (28). Alternatively,
ETs using a lower number of blastocysts after further selection
via extended culture have been shown to yield pregnancy
rates similar to those of transfers using higher numbers of
cleavage-stage embryos (30). Although this technique is be-
ing widely used today in IVF laboratories, reports with con-
flicting conclusions regarding the obstetric, perinatal, and
neonatal outcomes after transfer of blastocyst and cleavage
embryos are still present in the literature (31–35). However,
systematic review and meta-analysis seem to show better
cumulative clinical pregnancy rates after the transfer of
cleavage-stage embryos owing to higher use rates of embryos
and less cancelled transfer owing to no blastocysts being
available (36).

Although relatively expensive, time-lapse technology
enables the collection of significantly increased volumes of
data regarding embryo development without interrupting
the culture conditions. Associations were reported to exist be-
tween embryo morphokinetic parameters and their subse-
quent implantation potential (1, 4) or ploidy status (37).
However, more recent evidence has shown potential issues
in the transferability of Meseguer et al.’s algorithm between
different clinics (7–10), possibly due to different embryo
growth rates in diverse settings (i.e., oxygen concentration
[12], culture media [11], or patient population [13, 14, 17])
in different laboratories. Therefore, embryo deselection
using qualitative parameters rather than quantitative
660
measurements may improve interlaboratory reproducibility
as the qualitative parameters are independent of absolute
cleavage timings (10), although further investigation is
required to support this theory. It would be of great
practical value for new time-lapse equipment users to start
with while collecting KID data for determination of their
own optimal ranges in the quantitative parameters. In the
proposed qualitative deselection model, the parameters
included were extended by adding an additional conventional
measure (<8 cells at 68 hpi), based on the qualitative model
we have recently published (21), where both conventional
(i.e., PQE in conventional grading) and time-lapse parameters
(DC, RC,<6 ICCP at the end of the 4-cell stage) were included.
All parameters were significantly (P< .01) associated with
reduced implantation, except for PQE (P>.05), largely due
to the small number (seven) of embryos affected. So presum-
ably, with the consideration of qualitative deselection param-
eters at transfer, the implantation rate of embryos included in
the current data set could potentially be improved up to 34.3%
(57/166) from 23.7% (64/270). Earlier studies have explored
the potential impact of the presence of MN in cleavage-
stage embryos on their subsequent implantation via either
static observations (38) or time-lapse monitoring (39). MN
was not included in the present study as one of the deselection
criteria, because logistic regression analysis showed no sig-
nificant impact of MN on implantation when considering
abnormal biological events. The formation of MN could
partially be explained by the occurrence of certain abnormal
cleavage patterns (e.g., MN formation after RC as illustrated in
a previously published video clip [19]), and its impact could be
diluted by the inclusion of such parameters.

A major advantage of time-lapse culture compared with
the traditional protocol of static observations is the contin-
uous monitoring of embryos, which enables the observation
of most biological events during early embryonic develop-
ment (4, 6). However the precision of the previously
published timing systems (22) is limited owing to [1]
technical issues in the routine IVF laboratory protocol (i.e.,
uncertain sperm entry time point t0 in IVF embryos) and [2]
the design of particular equipment such as the Embryoscope
(i.e., only a single t0 can be defined per slide, each of which
carries a number of oocytes) (24). Considering these issues,
the current study presents a deselection model using an
alternative biological reference starting time point of PNF
for both IVF and ICSI embryos as reported previously (24),
which greatly improves the certainty and precision in
timing parameters. Retrospective data analysis in the
present study showed consistent results in implantation
rates of embryos between IVF and ICSI cases by using the
same optimal ranges of T5_PNF and S2 (Fig. 2). However, it
must be noted that embryo selection using morphokinetic
parameters should involve individual laboratory specific
optimal ranges, owing to potential interlaboratory variation
in embryo growth as described elsewhere (10–17).
Therefore, it is highly recommended that each IVF
laboratory develop its own cutoff values for quantitative
parameters based on KID data, although methodology may
be adopted from published studies. This is illustrated by the
parameter showing the duration of the 3-cell stage, S2, a
VOL. 105 NO. 3 / MARCH 2016
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morphokinetic selection/deselection tool used by both Mese-
guer et al. (1) and ourselves. Meseguer et al.’s original data
had a cutoff of 0.76 hour, which compares well with the pre-
sent study of 0.84 hour. However, this apparent agreement
was the result of Meseguer et al. using the median value (1),
but the present study uses the third quartile. Closer examina-
tion of the interquartile range shows that the embryos in the
present study were growing faster (interquartile range of
0.17–0.84 hour) compared with Meseguer et al.'s (interquar-
tile range of 0.3–1.5 hour), confirming the need for morpho-
kinetic cutoffs to be laboratory specific. The different embryo
morphokinetics in the two laboratories observed may be
attributed to the different settings, including the oxygen con-
centration (12) used in the incubators, culture media (11), and
patient factors (13, 14, 17). Furthermore, the reduced sample
size in both studies should also be considered; therefore,
differences or similarities in embryo morphokinetics ought
to be further investigated in future large-scale studies. How-
ever, it is encouraging that the prospective validation of the
proposed model in the present study was unaffected when
simply switching between two different culture media suites
within the same laboratory (Table 2).

Meseguer et al. (1) reported that the implantation rates of
embryos followed a bell-shaped curve (16%, 37%, 40%, and
14%, respectively) according to four quartile ranges of t5 rela-
tive to sperm injection. The distribution of implantation rates
of 270 KID embryos included in the present study followed a
similar pattern according toT5_PNF (Supplemental Fig. 1A).
Interestingly, however, after applying the deselection criteria,
the implantation rates of the remaining embryos (n ¼ 166)
displayed a linear pattern (Table 1) along the timings of
T5_PNF (Supplemental Fig. 1B). The explanation for this
might be the removal of the DC embryos (the 2- or 4-cell stage
is less than 5 hours) from the cohort, which has shortened
T5_PNF values but led to limited implantation potential.
Eliminating abnormal cleavage patterns such as DC may
result in improved embryo selection for new time-lapse users
when their own optimal ranges are not yet known. For
example, embryo(s) with the shortest T5_PNF in the cohort
could be selected after excluding embryos with abnormal
cleavage patterns (including DC) without having to be
restricted by the unknown optimal timing window.

Annotations of all embryos included in the present study
were performed by one embryologist (Y.L.), to minimize the
interobserver variations. Using intraclass correlation coeffi-
cients (ICCs) analysis, a previous study has shown good repro-
ducibility in annotations of PNF and cleavage divisions up to
the 8-cell stage of human embryos via time-lapse monitoring
in both inter- (ICC ranging from 0.809 to 0.999) and intraob-
server (ICC ranging from 0.87 to1) analysis (40). Apart from
the above timing parameters, the proposed model also in-
cludes the conventional grading component and abnormal
cleavage patterns. The conventional grading system was re-
ported to have satisfactory inter- and intraobserver agree-
ment, which could be further improved via training sessions
(41, 42). However, the assessment of inter- and
intraobserver reproducibility in identifying abnormal
cleavage patterns has not yet been fully investigated and
requires future large-scale studies. Similar to conventional
VOL. 105 NO. 3 / MARCH 2016
grading systems, additional training and comparison of
participating embryologists could improve the consistency
of results. Furthermore, the small sample size of the present
study requires large-scale prospective randomized controlled
trials to validate the proposed model.

To conclude, both qualitative and quantitative deselec-
tions are powerful tools to aid embryo selection via contin-
uous monitoring. The deselection model proposed in the
present study has been shown to work in the one laboratory,
thus the transferability of this model between laboratories
with independent patient populations, particularly the quali-
tative component, requires further investigation.
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SUPPLEMENTAL FIGURE 1

Comparison of frequency distribution in time to reach 5-cell stage relative to pronuclear fading (T5_PNF) between all (A, n¼ 270) and deselected (B,
n ¼ 166) embryos.
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